首页> 外文OA文献 >Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid
【2h】

Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid

机译:使用纳米流体作为中间流体的现场级间接热回收系统的传热增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In this paper, implementation of nanofluids as a Heat Transfer Enhancement technique in Process Integration has been studied. A step by step flowchart is introduced and as a case study the effect of replacing water with various nanofluids as the heat transfer media in an industrial Heat Recovery Loop (HRL) has been modelled. Nanofluids are prepared by distributing a nanoparticle through a base fluid such as water, ethylene glycol or oils. Suspended nanoparticles slightly affect the thermal and physical properties of the base fluid. Primarily nanoparticles are added to improve the fluid’s heat transfer characteristics by increasing its Reynolds number and thermal conductivity. HRL system in a large dairy factory in New Zealand has been studied as case study. Results show that by applying various HRL design methods and a nanofluid as an intermediate fluid, an increase in heat recovery is possible without the need for extra heat exchanger area and infrastructure. 1.5 vol.% CuO/water nanofluid has been chosen as an intermediate fluid and by using a constant temperature storage control strategy, heat recovery from liquid–liquid heat exchangers increases between 5% and 9%. The air-side heat transfer coefficient limits the impact of using a nanofluid for the air–liquid exchangers. In other cases, the total available duty from the process stream, such as a condenser, significantly nullifies the heat transfer benefit of using a nano- fluid in a retrofit situation. Alternative to increasing heat recovery, results show that applying a nanofluid in the HRL design phase enables heat exchanger area to decrease significantly for liquid–liquid matches. Results show that the increase in pressure drop and friction factor effects in such a system is negligible
机译:本文研究了纳米流体作为过程集成中传热增强技术的实现。介绍了分步流程图,并作为案例研究,模拟了在工业热回收回路(HRL)中以各种纳米流体代替水作为传热介质的效果。纳米流体是通过将纳米颗粒分布在基础流体(例如水,乙二醇或油)中来制备的。悬浮的纳米颗粒会轻微影响基础液的热和物理性能。主要是添加纳米颗粒,以通过增加其雷诺数和导热率来改善流体的传热特性。作为案例研究,对新西兰一家大型乳品厂的HRL系统进行了研究。结果表明,通过应用各种HRL设计方法和纳米流体作为中间流体,无需增加额外的热交换器面积和基础设施,就可以提高热回收率。已选择1.5%(体积)的CuO /水纳米流体作为中间流体,并且通过采用恒温存储控制策略,液-液热交换器的热回收率提高了5%至9%。空气侧的传热系数限制了将纳米流体用于气液交换器的影响。在其他情况下,来自工艺流(例如冷凝器)的总可用负荷会大大抵消在改造情况下使用纳米流体的传热效益。结果表明,除了增加热量回收外,在HRL设计阶段应用纳米流体还可以使液-液匹配的换热器面积显着减小。结果表明,在这种系统中,压降和摩擦因数的增加影响可忽略不计

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号